Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.966
Filtrar
1.
J Biotechnol ; 384: 12-19, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373531

RESUMO

Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.


Assuntos
Hidroliases , Odorantes , Hidroliases/metabolismo , Nitrilas/metabolismo , Oximas/química , Oximas/metabolismo , Enzimas Imobilizadas
2.
EBioMedicine ; 101: 104993, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324982

RESUMO

BACKGROUND: Macrophages are innate immune cells whose phagocytosis function is critical to the prognosis of stroke and peritonitis. cis-aconitic decarboxylase immune-responsive gene 1 (Irg1) and its metabolic product itaconate inhibit bacterial infection, intracellular viral replication, and inflammation in macrophages. Here we explore whether itaconate regulates phagocytosis. METHODS: Phagocytosis of macrophages was investigated by time-lapse video recording, flow cytometry, and immunofluorescence staining in macrophage/microglia cultures isolated from mouse tissue. Unbiased RNA-sequencing and ChIP-sequencing assays were used to explore the underlying mechanisms. The effects of Irg1/itaconate axis on the prognosis of intracerebral hemorrhagic stroke (ICH) and peritonitis was observed in transgenic (Irg1flox/flox; Cx3cr1creERT/+, cKO) mice or control mice in vivo. FINDINGS: In a mouse model of ICH, depletion of Irg1 in macrophage/microglia decreased its phagocytosis of erythrocytes, thereby exacerbating outcomes (n = 10 animals/group, p < 0.05). Administration of sodium itaconate/4-octyl itaconate (4-OI) promoted macrophage phagocytosis (n = 7 animals/group, p < 0.05). In addition, in a mouse model of peritonitis, Irg1 deficiency in macrophages also inhibited phagocytosis of Staphylococcus aureus (n = 5 animals/group, p < 0.05) and aggravated outcomes (n = 9 animals/group, p < 0.05). Mechanistically, 4-OI alkylated cysteine 155 on the Kelch-like ECH-associated protein 1 (Keap1), consequent in nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and transcriptional activation of Cd36 gene. Blocking the function of CD36 completely abolished the phagocytosis-promoting effects of Irg1/itaconate axis in vitro and in vivo. INTERPRETATION: Our findings provide a potential therapeutic target for phagocytosis-deficiency disorders, supporting further development towards clinical application for the benefit of stroke and peritonitis patients. FUNDING: The National Natural Science Foundation of China (32070735, 82371321 to Q. Li, 82271240 to F. Yang) and the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ202010025033 to Q. Li).


Assuntos
Acidente Vascular Cerebral Hemorrágico , Peritonite , Succinatos , Humanos , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch , Acidente Vascular Cerebral Hemorrágico/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Macrófagos/metabolismo , Peritonite/tratamento farmacológico , Fagocitose , Prognóstico , Hidroliases/genética , Hidroliases/metabolismo , Hidroliases/farmacologia
3.
Nat Commun ; 15(1): 1102, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321044

RESUMO

The Entner-Doudoroff (ED) pathway provides an alternative to glycolysis. It converts 6-phosphogluconate (6-PG) to glyceraldehyde-3-phosphate and pyruvate in two steps consisting of a dehydratase (EDD) and an aldolase (EDA). Here, we investigate its distribution and significance in higher plants and determine the ED pathway is restricted to prokaryotes due to the absence of EDD genes in eukaryotes. EDDs share a common origin with dihydroxy-acid dehydratases (DHADs) of the branched chain amino acid pathway (BCAA). Each dehydratase features strict substrate specificity. E. coli EDD dehydrates 6-PG to 2-keto-3-deoxy-6-phosphogluconate, while DHAD only dehydrates substrates from the BCAA pathway. Structural modeling identifies two divergent domains which account for their non-overlapping substrate affinities. Coupled enzyme assays confirm only EDD participates in the ED pathway. Plastid ancestors lacked EDD but transferred metabolically promiscuous EDA, which explains the absence of the ED pathway from the Viridiplantae and sporadic persistence of EDA genes across the plant kingdom.


Assuntos
Escherichia coli , Via de Pentose Fosfato , Escherichia coli/genética , Glicólise , Ácido Pirúvico , Plantas/metabolismo , Hidroliases/metabolismo , Glucose/metabolismo
4.
Biochem Biophys Res Commun ; 704: 149588, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38422897

RESUMO

Very long-chain fatty acids (VLCFAs) are fatty acids with a carbon chain length greater than 18 carbons (>C18) and exhibit various functions, such as in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function, and anti-inflammation. VLCFAs are absorbed by dietary or elongated from endogenous hexadecanoyl acids (C16). Similar to long-chain fatty acid synthesis, VLCFAs elongation begins with acyl-CoA and malonyl-CoA as sources, and the length of the acyl chain is extended by two carbon units in each cycle. However, the VLCFAs elongation machinery is located in ER membrane and consists of four components, FA elongase (ELOVL), 3-ketoacyl-CoA reductase (KAR), 3-hydroxyacyl-CoA dehydratase (HACD), and trans-2-enoyl-CoA reductase (TECR), which is different with the long-chain fatty acid machinery fatty acid synthase (FAS) complex. Although the critical components in the elongation cycle are identified, the detailed catalytic and regulation mechanisms are still poorly understood. Here, we focused on the structural and biochemical analysis of TECR-associated VLCFA elongation reactions. Firstly, we identified a stable complex of human HACD2-TECR based on extensive in vitro characterizations. Combining computational modeling and biochemical analysis, we confirmed the critical interactions between TECR and HACD1/2. Then, we proposed the putative substrate binding sites and catalytic residues for TECR and HACD2. Besides, we revealed the structural similarities of HACD with ELOVLs and proposed the possible competition mechanism of TECR-associated complex formation.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos , Humanos , Masculino , Acil Coenzima A/metabolismo , Carbono , Ácidos Graxos/metabolismo , Hidroliases/metabolismo
5.
J Biotechnol ; 384: 20-28, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38395363

RESUMO

Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.


Assuntos
Hidroliases , Nitrilas , Nitrilas/química , Hidroliases/metabolismo , Biocatálise , Amidas
6.
ACS Chem Biol ; 19(3): 718-724, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38389448

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a common cofactor in enzyme-catalyzed reactions that involve hydride transfers. In contrast, urocanase and urocanase-like enzymes use NAD+ for covalent electrophilic catalysis. Deciphering avenues by which this unusual catalytic strategy has diversified by evolution may point to approaches for the design of novel enzymes. In this report, we describe the S-methyl thiourocanate hydratase (S-Me-TUC) from Variovorax sp. RA8 as a novel member of this small family of NAD+-dependent hydratases. This enzyme catalyzes the 1,4-addition of water to S-methyl thiourocanate as the second step in the catabolism of S-methyl ergothioneine. The crystal structure of this enzyme in complex with the cofactor and a product analogue identifies critical sequence motifs that explain the narrow and nonoverlapping substrate scopes of S-methyl thiourocanate-, urocanate-, thiourocanate-, and Nτ-methyl urocanate-specific hydratases. The discovery of a S-methyl ergothioneine catabolic pathway also suggests that S-methylation or alkylation may be a significant activity in the biology of ergothioneine.


Assuntos
Ergotioneína , Urocanato Hidratase , Urocanato Hidratase/química , Urocanato Hidratase/metabolismo , NAD/metabolismo , Especificidade por Substrato , Hidroliases/metabolismo
7.
Biochem Biophys Res Commun ; 700: 149584, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38295647

RESUMO

The pseudouridine (ψ) synthase, RluD is responsible for three ψ modifications in the helix 69 (H69) of bacterial 23S rRNA. While normally dispensable, rluD becomes critical for rapid cell growth in bacteria that are defective in translation-termination. In slow-growing rluD- bacteria, suppressors affecting termination factors RF2 and RF3 arise frequently and restore normal termination and rapid cell growth. Here we describe two weaker suppressors, affecting rpsG, encoding ribosomal protein uS7 and ssrA, encoding tmRNA. In K-12 strains of E. coli, rpsG terminates at a TGA codon. In the suppressor strain, alteration of an upstream CAG to a TAG stop codon results in a shortened uS7 and partial alleviation of slow growth, likely by replacing an inefficient TGA stop codon with the more efficient TAG. Inefficient termination events, such as occurs in some rluD- strains, are targeted by trans-translation. Inactivation of the ssrA gene in slow-growing, termination-defective mutants lacking RluD and RF3, also partially restores robust growth, most probably by preventing destruction of completed polypeptides on ribosomes at slow-terminating stop codons. Finally, an additional role for RluD has been proposed, independent of its pseudouridine synthase activity. This is based on the observation that plasmids expressing catalytically dead (D139N or D139T) RluD proteins could nonetheless restore robust growth to an E. coli K-12 rluD- mutant. However, newly constructed D139N and D139T rluD plasmids do not have any growth-restoring activity and the original observations were likely due to the appearance of suppressors.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Escherichia coli/metabolismo , Códon de Terminação/genética , Biossíntese de Proteínas , Hidroliases/metabolismo
8.
Int J Biol Macromol ; 254(Pt 2): 127800, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918589

RESUMO

Cinnamamide and its derivatives are the most common and important building blocks widely present in natural products. Currently, nitrile hydratase (NHase, EC 4.2.1.84) has been widely used in large-scale industrial production of nicotinamide and acrylamide, while its catalytic activity is extremely low or inactive for bulky nitrile substrates such as cinnamonitrile. Therefore, beneficial variant ßF37P/L48P/F51N were obtained from PtNHase of Pseudonocardia thermophila JCM3095 by reshaping of substrate access tunnel and binding pocket, which exhibited 14.88-fold improved catalytic efficiency compared to the wild-type PtNHase. Structure analysis, molecular dynamics simulations and dynamical cross-correlation matrix (DCCM) analysis revealed that the introduced mutations enlarged the substrate access tunnel and binding pocket, enhanced overall anti-correlated movements of enzymes, which would promote product release during the dynamic process of catalysis. In a hydration process, the complete conversion of 5 mM cinnamonitrile was achieved by ßF37P/L48P/F51N in a 50 mL reaction, with cinnamamide yield of almost 100 % and productivity of 0.736 g L-1 h-1. The study demonstrates the co-evolution of substrate access tunnel and binding pocket is an effective strategy, and provides a valuable reference for future research. Furthermore, NHases have huge potential for catalyzing bulky nitriles to form corresponding amides in large-scale industrial production.


Assuntos
Hidroliases , Nitrilas , Nitrilas/química , Hidroliases/metabolismo
9.
J Microbiol Biotechnol ; 33(12): 1595-1605, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38151830

RESUMO

Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Hidroliases/genética , Hidroliases/química , Hidroliases/metabolismo , Sítios de Ligação , Citratos
10.
Aging (Albany NY) ; 15(21): 12136-12154, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37925171

RESUMO

Non-small cell lung cancer (NSCLC) is the main pathological type of lung cancer. In this study, multi-omics analysis revealed a significant increase of pseudouridine synthase 1 (PUS1) in NSCLC and the high expression of PUS1 was associated with shorter OS (Overall Survival), PFS (Progression Free Survival), and PPS (Post Progression Survival) of NSCLC patients. Clinical subgroup analysis showed that PUS1 may be involved in the occurrence and development of NSCLC. Besides, TIMER, ESTIMATE, and IPS analysis suggested that PUS1 expression was associated with immune cell infiltration, and the expression of PUS1 was significantly negatively correlated with DC cell infiltration. GESA analysis also indicated PUS1 may involve in DNA_REPAIR, E2F_TARGETS, MYC_TARGETS_V2, G2M_CHECKPOINT and MYC_TARGETS_V1 pathways and triggered NSCLC malignancy through MCM5 or XPO1. Furthermore, PUS1 may be a potential target for NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Multiômica , Hidroliases/metabolismo , Hidroliases/uso terapêutico
11.
J Chem Inf Model ; 63(23): 7499-7507, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37970731

RESUMO

MqnA is the first enzyme on the futalosine pathway to menaquinone, which catalyzes the dehydration of chorismate to yield 3-enolpyruvyl-benzoate (3-EPB). MqnA is also the only chorismate dehydratase known so far. In this work, based on the recently determined crystal structures, we constructed the enzyme-substrate complex models and conducted quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the reaction details of MqnA and the critical roles of pocket residues. The calculation results confirm that the MqnA-catalyzed dehydration of chorismate follows the substrate-assisted E1cb mechanism, in which the enol carboxylate in the side chain of the substrate is responsible for deprotonating the C3 of chorismate. This proton transfer process is much slower than C4-OH departure. Calculations on different mutants reveal that S86 and N17 are important for anchoring the enol carboxylate of the substrate in a favorable conformation to extract the C3-proton. The strong H-bonds formed between the enol carboxylate of chorismate and S86/N17 play a key role in stabilizing the reaction intermediate. Consistent with the experimental observations, our calculations demonstrate that the MqnA N17D mutant also shows hydrolase activity and the typical enzyme-catalyzed hydrolysis mechanism is elucidated. The protonated D17 is responsible for saturating the methylene group of chorismate to start the hydrolysis reaction. The orientation of the carboxyl group of D17 is key in determining MqnA to be a dehydratase or hydrolase.


Assuntos
Desidratação , Prótons , Humanos , Hidrólise , Hidrolases , Catálise , Hidroliases/genética , Hidroliases/química , Hidroliases/metabolismo
12.
Biochemistry ; 62(21): 3145-3158, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37890137

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in North America. The exterior surface of this bacterium is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different carbohydrates that is anchored to the outer membrane. Heptoses of various configurations are among the most common monosaccharides that have been identified within the CPS. It is currently thought that all heptose variations derive from the modification of GDP-d-glycero-α-d-manno-heptose (GMH). From the associated gene clusters for CPS biosynthesis, we have identified 20 unique enzymes with different substrate profiles that are used by the various strains and serotypes of C. jejuni to make six different stereoisomers of GDP-6-deoxy-heptose, four stereoisomers of GDP-d-glycero-heptoses, and two stereoisomers of GDP-3,6-dideoxy-heptoses starting from d-sedoheptulose-7-phosphate. The modification enzymes include a C4-dehydrogenase, a C4,6-dehydratase, three C3- and/or C5-epimerases, a C3-dehydratase, eight C4-reductases, two pyranose/furanose mutases, and four enzymes for the formation of GMH from d-sedoheptulose-7-phosphate. We have mixed these enzymes in different combinations to make novel GDP-heptose modifications, including GDP-6-hydroxy-heptoses, GDP-3-deoxy-heptoses, and GDP-3,6-dideoxy-heptoses.


Assuntos
Campylobacter jejuni , Humanos , Polissacarídeos/metabolismo , Heptoses , Redes e Vias Metabólicas , Hidroliases/metabolismo , Fosfatos/metabolismo
13.
Cancer Lett ; 578: 216442, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852428

RESUMO

Hepatocellular carcinoma (HCC) is often associated with poor outcomes due to lung metastasis. ICAM-1+ circulating tumor cells, termed circulating cancer stem cells (CCSCs), possess stem cell-like characteristics. However, it is still unexplored how their presence indicates lung metastasis tendency, and particularly, what mechanism drives their lung metastasis. Here, we demonstrated that a preoperative CCSC count in 5 mL of blood (CCSC5) of >3 was a risk factor for lung metastasis in clinical HCC patients. The CSCs overexpressed with circ-CDYL entered the bloodstream and developed lung metastases in mice. Mechanistically, circ-CDYL promoted COL14A1 expression and thus ERK signaling to facilitate epithelial-mesenchymal transition. Furthermore, we uncovered that an RNA-binding protein, EEF1A2, acted as a novel transcriptional (co-) factor to cooperate with circ-CDYL and initiate COL14A1 transcription. A high circ-CDYL level is caused by HIF-1⍺-mediated transcriptional upregulation of its parental gene CDYL and splicing factor EIF4A3 under a hypoxia microenvironment. Hence, the hypoxia microenvironment enables the high-tendency lung metastasis of ICAM-1+ CCSCs through the HIF-1⍺/circ-CDYL-EEF1A2/COL14A1 axis, potentially allowing clinicians to preoperatively detect ICAM-1+ CCSCs as a real-time biomarker for precisely deciding HCC treatment strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/metabolismo , Hipóxia/genética , Células-Tronco Neoplásicas/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proliferação de Células , Microambiente Tumoral , Hidroliases/genética , Hidroliases/metabolismo , Proteínas Correpressoras/genética
14.
Appl Microbiol Biotechnol ; 107(23): 7089-7104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37733049

RESUMO

Nitriles are of significant interest in the flavor and fragrance industries with potential application in cosmetics due to their higher stability than analogous aldehydes. However, the traditional methods to prepare nitriles need toxic reagents and hash conditions. This work aimed to develop a chemoenzymatic strategy to synthesize nitriles from natural aldehydes with aldoxime as the intermediate. A non-classical aldoxime dehydratase (Oxd) was discovered from the fungus Aspergillus ibericus (OxdAsp) to catalyze the dehydration of aldoximes to corresponding nitriles under mild conditions. The amino acid sequence of OxdAsp exhibits an approximately 20% identity with bacterial Oxds. OxdAsp contains a heme prosthetic group bound with the axial H287 in the catalytic pocket. The structure models of OxdAsp with substrates suggest that its catalytic triad is Y138-R141-E192, which is different from the classically bacterial Oxds of His-Arg-Ser/Thr. The catalytic mechanism of OxdAsp was proposed based on the mutagenesis of key residues. The hydroxyl group of the substrate is fixed by E192 to increase its basicity. Y138 acts as a general acid-based catalyst, and its phenolic proton is polarized by the adjacent R141. The protonated Y138 would donate a proton to the hydroxyl group of the substrate and eliminate a water molecule from aldoxime to produce nitrile. The recombinant OxdAsp can efficiently dehydrate citronellal oxime and cinnamaldoxime to citronellyl nitrile and cinnamonitrile in aqueous media, which are applied as fragrance ingredients in the food and cosmetic fields. KEY POINTS: • A novel aldoxime dehydratase from the Aspergillus genus was first characterized as a heme-binding protein. • The catalytic mechanism was predicted based on the molecular interactions of the catalytic pocket with the substrate. • A chemoenzymatic strategy was developed to synthesize nitriles from natural aldehydes with aldoxime as the intermediate.


Assuntos
Bactérias , Prótons , Bactérias/metabolismo , Hidroliases/metabolismo , Nitrilas/metabolismo , Aldeídos
15.
Protein Sci ; 32(10): e4779, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695939

RESUMO

Malate (2-hydroxysuccinic acid) and tartrate (2,3-dihydroxysuccinic acid) are chiral substrates; the former existing in two enantiomeric forms (R and S) while the latter exists as three stereoisomers (R,R; S,S; and R,S). Dehydration by stereospecific hydrogen abstraction and antielimination of the hydroxyl group yield the achiral products fumarate and oxaloacetate, respectively. Class-I fumarate hydratase (FH) and L-tartrate dehydratase (L-TTD) are two highly conserved enzymes belonging to the iron-sulfur cluster hydrolyase family of enzymes that catalyze reactions on specific stereoisomers of malate and tartrate. FH from Methanocaldococcus jannaschii accepts only (S)-malate and (S,S)-tartrate as substrates while the structurally similar L-TTD from Escherichia coli accepts only (R)-malate and (R,R)-tartrate as substrates. Phylogenetic analysis reveals a common evolutionary origin of L-TTDs and two-subunit archaeal FHs suggesting a divergence during evolution that may have led to the switch in substrate stereospecificity preference. Due to the high conservation of their sequences, a molecular basis for switch in stereospecificity is not evident from analysis of crystal structures of FH and predicted structure of L-TTD. The switch in enantiomer preference may be rationalized by invoking conformational plasticity of the amino acids interacting with the substrate, together with substrate reorientation and conformer selection about the C2C3 bond of the dicarboxylic acid substrates. Although classical models of enzyme-substrate binding are insufficient to explain such a phenomenon, the enantiomer superposition model suggests that a minor reorientation in the active site residues could lead to the switch in substrate stereospecificity.


Assuntos
Malatos , Tartaratos , Humanos , Tartaratos/metabolismo , Malatos/metabolismo , Filogenia , Desidratação , Hidroliases/genética , Hidroliases/metabolismo , Fumarato Hidratase/química , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Escherichia coli/metabolismo , Domínio Catalítico , Especificidade por Substrato , Cinética
16.
J Biotechnol ; 371-372: 33-40, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285942

RESUMO

Microbial synthesis of plant-based myrcene is of great interest because of its high demand, however, achieving high biosynthetic titers remains a great challenge. Previous strategies adopted for microbial myrcene production have relied on the recruitment of a multi-step biosynthetic pathway which requires complex metabolic regulation or high activity of myrcene synthase, hindering its application. Here, we present an effective one-step biotransformation system for myrcene biosynthesis from geraniol, using a linalool dehydratase isomerase (LDI) to overcome these limitations. The truncated LDI possesses nominal activity that catalyzes the isomerization of geraniol to linalool and the subsequent dehydration to myrcene in anaerobic environment. In order to improve the robustness of engineered strains for the efficient conversion of geraniol to myrcene, rational enzyme modification and a series of biochemical process engineering were employed to maintain and improve the anaerobic catalytic activity of LDI. Finally, by introducing the optimized myrcene biosynthetic capability in the existing geraniol-production strain, we achieve de novo biosynthesis of myrcene at 1.25 g/L from glycerol during 84 h aerobic-anaerobic two-stage fermentation, which is much higher than previously reported myrcene levels. This work highlights the value of dehydratase isomerase-based biocatalytic in establishing novel biosynthetic pathways and lays a reliable foundation for the microbial synthesis of myrcene.


Assuntos
Escherichia coli , Monoterpenos , Monoterpenos/química , Monoterpenos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Vias Biossintéticas , Isomerases/genética , Isomerases/metabolismo , Engenharia Metabólica
17.
Int J Biol Macromol ; 245: 125531, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355073

RESUMO

Nitrile hydratase (NHase) has been extensively utilized in industrial acrylamide production. However, the vulnerability to high concentrations of acrylamide limits its further application. Herein, we redesigned the N-terminal loop at the tetramer interface of a thermophilic NHase from Pseudonocardia thermophila JCM3095 (PtNHase), and its catalytic activity, resistance to high acrylamide concentrations, and thermostability were improved. Amino acid residues located in the N-terminal loop of the tetramer interface that are responsible for enhancing the resistance to high acrylamide concentrations were identified via static structural analysis and molecular dynamics simulations. A variant library was used to fine-tune the tetramer interface. Variant αL6T exhibited 3.5-fold greater resistance to 50% (v/v) acrylamide, whereas its activity was 1.2-fold higher than that of the wild-type (WT) enzyme, revealing no activity-stability trade-off. Compared to the use of Escherichia coli harboring the WT enzyme, the use of E. coli harboring αL6T increased the acrylamide concentration from 398.1 g/L to 500 g/L. Crystal structure-guided analysis of αL6T and molecular dynamics simulations revealed that increased enzyme surface hydration and the introduction of positive cross-correlation into the N-terminal loop of the tetramer interface caused the two loop regions to hook to each other, thus improving the resistance to high acrylamide concentrations.


Assuntos
Amidas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Acrilamida , Hidroliases/metabolismo
18.
Cancer Lett ; 567: 216265, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37302564

RESUMO

Gliomas are highly prevalent and aggressive brain tumors. Growing evidence shows that epigenetic changes are closely related to cancer development. Here we report the roles of Chromodomain Y-like (CDYL), an important epigenetic transcriptional corepressor in the central nervous system in glioma progression. We found that CDYL was highly expressed in glioma tissues and cell lines. CDYL knockdown decreased cell mobility in vitro and significantly reduced tumor burden in the xenograft mouse in vivo. RNA sequencing analysis revealed the upregulation of immune pathways after CDYL knockdown, as well as chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 12. The immunohistochemistry staining and macrophage polarization assays showed increased infiltration of M1-like tumor-associated macrophages/microglia (TAMs) while decreased infiltration of M2-like TAMs after CDYL knockdown in vivo and in vitro. Following the in situ TAMs depletion or CCL2 antibody neutralization, the tumor-suppressive role of CDYL knockdown was abolished. Collectively, our results show that CDYL knockdown suppresses glioma progression, which is associated with CCL2-recruited monocytes/macrophages and the polarization of M1-like TAMs in the tumor microenvironment, indicating CDYL as a promising target for glioma treatment.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Camundongos , Animais , Macrófagos/metabolismo , Microambiente Tumoral/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Imunidade , Linhagem Celular Tumoral , Hidroliases/metabolismo , Proteínas Correpressoras/metabolismo
19.
Nat Commun ; 14(1): 1931, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024485

RESUMO

Ethylene glycol is an attractive two-carbon alcohol substrate for biochemical product synthesis as it can be derived from CO2 or syngas at no sacrifice to human food stocks. Here, we disclose a five-step synthetic metabolic pathway enabling the carbon-conserving biosynthesis of the versatile platform molecule 2,4-dihydroxybutyric acid (DHB) from this compound. The linear pathway chains ethylene glycol dehydrogenase, D-threose aldolase, D-threose dehydrogenase, D-threono-1,4-lactonase, D-threonate dehydratase and 2-oxo-4-hydroxybutyrate reductase enzyme activities in succession. We screen candidate enzymes with D-threose dehydrogenase and D-threonate dehydratase activities on cognate substrates with conserved carbon-centre stereochemistry. Lastly, we show the functionality of the pathway by its expression in an Escherichia coli strain and production of 1 g L-1 and 0.8 g L-1 DHB from, respectively, glycolaldehyde or ethylene glycol.


Assuntos
Etilenoglicol , Engenharia Metabólica , Humanos , Etilenoglicol/metabolismo , Redes e Vias Metabólicas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroliases/metabolismo , Oxirredutases/metabolismo
20.
J Biotechnol ; 367: 81-88, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907356

RESUMO

Aldoxime dehydratases (Oxds) are a unique class of enzymes, which catalyzes the dehydration of aldoximes to nitriles in an aqueous environment. Recently, they gained attention as a catalyst for a green and cyanide-free alternative to established nitrile syntheses, which often require the use of toxic cyanides and harsh reaction conditions. Up to now only thirteen aldoxime dehydratases have been discovered and biochemically characterized. This raised the interest for identifying further Oxds with, e.g., complementary properties in terms of substrate scope. In this study, 16 novel genes, presumably encoding aldoxime dehydratases, were selected by using a commercially available 3DM database based on OxdB, an Oxd from Bacillus sp. OxB-1. Out of 16 proteins, six enzymes with aldoxime dehydratases activity were identified, which differ in their substrate scope and activity. While some novel Oxds showed better performance for aliphatic substrate such as n-octanaloxime compared to the well characterized OxdRE from Rhodococcus sp. N-771, some showed activity for aromatic aldoximes, leading to an overall high usability of these enzymes in organic chemistry. The applicability for organic synthesis was underlined by converting 100 mM n-octanaloxime at a 10 mL scale within 5 h with the novel aldoxime dehydratase OxdHR as whole-cell catalyst (33 mgbww/mL).


Assuntos
Bacillus , Hidroliases , Hidroliases/genética , Hidroliases/metabolismo , Oximas/metabolismo , Bacillus/metabolismo , Nitrilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...